If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x-1900=0
a = 2; b = 5; c = -1900;
Δ = b2-4ac
Δ = 52-4·2·(-1900)
Δ = 15225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15225}=\sqrt{25*609}=\sqrt{25}*\sqrt{609}=5\sqrt{609}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{609}}{2*2}=\frac{-5-5\sqrt{609}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{609}}{2*2}=\frac{-5+5\sqrt{609}}{4} $
| 3x+5=-10-2x | | -x+0.8x=24 | | 0.05^3-4.5x^2+200x+5000=10000 | | 10x×5x=75 | | 6(2a+3)=7+4 | | 4n+3n-2=61 | | 65x=2.99166666667 | | 32.5x=3.3 | | c+1/6=c-4 | | z+1/3+3z=4 | | 10v+14=9-8v | | 5(16-r)=3r | | 5(3w+4)/3=-8 | | b+3/4+3b=4 | | 4/b+3 +3b=4 | | c+2/7=c | | 7c+2 =c | | 3k+14=7k-2 | | 5x^2-97x=0 | | 3k+14=7k−2 | | 6x+25=x-5 | | 4x+24=x-18 | | 8v+9=27-v | | 5x-36=x+4 | | 3x+17=x+23 | | 2x2+14x+218=0 | | 5u+98=77 | | 4K/6=k+8 | | 17/8p+3/2+7/5=97/10 | | 8(3)^x/2=72 | | Y=11-7(a,-10) | | -5x+12+9=4x+42 |